
RUBY'S

OUTER LIMITS

(Previously: "Ruby is Doomed")

RUBY'S

OUTER LIMITS
Or: "Why Ruby can be frustrating to use when writing

medium/large-ish apps."

Question Time

Who here has Ruby experience?
JS? PHP? Python?
Java? C? Go?
... Haskell?

Does this sound familiar?

You're doing it wrong.

So you hear this a lot.

You should be doing...

And this...

You should be doing...

Service
Classes

You should be doing...

Hexagonal
Rails

Service
Classes

You should be doing...

Hexagonal
Rails

Service
Classes

DCI  
(Data Context
Interaction)

You should be doing...

Hexagonal
Rails

Service
Classes

DCI  
(Data Context
Interaction)

FOLLOW THE
LAW OF DEMETER

You should be doing...

Hexagonal
Rails

Service
Classes

DCI  
(Data Context
Interaction)

FOLLOW THE
LAW OF DEMETER

Thin Controller, 
Fat View  

Fat Model

You should be doing...

Hexagonal
Rails

Service
Classes

DCI  
(Data Context
Interaction)

FOLLOW THE
LAW OF DEMETER

Thin Controller, 
Fat View  

Fat Model

Thin Controller,
Thin View, 

Thin Presenters, 
Fat Model

You should be doing...

Hexagonal
Rails

Service
Classes

DCI  
(Data Context
Interaction)

FOLLOW THE
LAW OF DEMETER

Thin Controller, 
Fat View  

Fat Model

Thin Controller,
Thin View, 

Thin Presenters, 
Fat Model

Thin Controller,
Thin View, 

Thin Presenters,
Thin Models, 

Thin Persistence

Bloody hell.

I'm not sure many of these approaches are actually
fixing anything; it feels like we're going around in
circles because we're dividing and recombining
something essentially complex, like pushing
unwanted broccoli around a plate.

Bloody hell.

And that's because I think it's difficult, as a program
gets larger, to figure out what your code is doing,
and therefore makes it difficult to change (or
refactor) your program safely, without getting a lot
of help from the computer.

Safety

Safely changing programs is hard.
Safely changing programs without a safety net is harder.

Safety
• Modularisation
• Encapsulation
• Annotation
• Automatic detection of errors

We do a few things to make
code safer to work on.
Modularisation, grouping it into
chunks. Encapsulation, hiding
the internal state via abstraction.
Annotation, by writing down
how, say, a function can be used
or what variables mean.

Safety
• Modularisation
• Encapsulation
• Annotation
• Automatic detection of errors

And Automatic detection of
errors. Which, in Ruby land, is
Testing. 
And it's really the only tool we
have. We check whether things
work or not by running them
over and over again with
different parameters with the
system in different states.

Definition Time

Static

Static, ability to look at and figure
out what the code may do without
running it.

Dynamic

Dynamic, only option is to run
code it over and over, with
different parameters, to check
what it does.

An Example

Ruby
def	
 increment(a)	

	
 	
 a	
 +	
 1	

end

What could a be?
What happens when we add
1 to a?

Ruby
def	
 increment(a)	

	
 	
 a.+(1)	

end

Anything. "a" can be anything. 
!
What is +? It's very firmly tied to
a. As is whether 1 is valid for that
given +().

Ruby
def	
 increment(a)	

	
 	
 a	
 +	
 1	

end

So let's think about just a small
range of possibilities for a.

Ruby
def	
 increment(a)	

	
 	
 a	
 +	
 1	

end

So maybe a's an integer.
0, 1, 300, -6, ...

Ruby
def	
 increment(a)	

	
 	
 a	
 +	
 1	

end

... Or a String or BlogPost model.
Or an
ActionDispatch::Routing::Mapper.

We can fix this!

So you hear this.

Duck Typing!

We'll use duck typing!

Duck Typing!
def	
 increment(a)	

	
 	
 if	
 !a.respond_to?(:+) 
	
 	
 	
 	
 raise	
 TypeError,	
 "yeah	
 nah"	

	
 	
 end	

	
 	
 a	
 +	
 1	

end

We'll check that "a" has
something that pays attention
to +()!

Duck Typing!

Duck Typing is a fib. Names are great but they don't tell you shit about
what the method is doing.  
 
Pass it something that doesn't behave or takes other args, and kaboom.
Go has a stronger method; same problem. Even PHP does it slightly
better with named interfaces that classes specifically have to implement.

What is "a"?
def	
 increment(a)	

	
 	
 raise	
 TypeError,	
 "Nope"	
 unless	
 a.respond_to?(:+)	

	
 	
 a	
 +	
 1	

end	

!
class	
 NopeNopeNope	
 <	
 NukeControl	

	
 	
 def	
 +(a)	

	
 	
 	
 	
 fire_ze_missiles!	

	
 	
 end	

end	

!
increment(NopeNopeNope.new)

So let's consider this "a". 
What does NopeNopeNope do
when you add a number to it?

What is "a"?
def	
 increment(a)	

	
 	
 raise	
 TypeError,	
 "Nope"	
 unless	
 a.respond_to?(:+)	

	
 	
 a	
 +	
 1	

end	

!
class	
 NopeNopeNope	
 <	
 NukeControl	

	
 	
 def	
 +(a)	

	
 	
 	
 	
 fire_ze_missiles!	

	
 	
 end	

end	

!
increment(NopeNopeNope.new)

Explicit Checks...?
def	
 increment(a)	

	
 	
 if	
 a.class	
 !=	
 Integer	

	
 	
 	
 	
 raise	
 TypeError,	
 "Nope"	

	
 	
 end	

	
 	
 a.+(1)	

end

So maybe we should do this
everywhere.
But suddenly the intent of our
code is obscured by checking
like this.

Avdi Grimm has a book, Confident Ruby, that proposes
"strong borders". At the edges of your program's or
library's interface, you be as strict as you can, and to
reduce the possibility of "bad" input messing with the
internal state.
Given Ruby's abilities, I think it's one of the few methods
we can try without covering our code in type checks and
piles and piles of unit tests.

but christ it makes me sad
thinking about it

Detour Time
It's a long one. Bring some lunch.

Not Ruby
increment	
 ::	
 Int	
 -­‐>	
 Int	

increment	
 a	
 =	
 …?

What could "a" be in this
example?

Not Ruby
increment	
 ::	
 Int	
 -­‐>	
 Int	

increment	
 a	
 =	
 a	
 +	
 1

We're restricted in the functions we can
use with "a" and 1. Only Ints. No nulls/
nils, or strings, or Routing Model Rails
Thinger Thing.
And yes, this could be a - 1 (and be
wrong; we'll be coming back to this
later).

Not Ruby
increment	
 ::	
 Int	
 -­‐>	
 Int	

increment	
 a	
 =	
 a	
 +	
 1	

!

…	

!

increment	
 1	
 	
 	
 	
 	
 	
 -­‐-­‐	
 Compiles!	

increment	
 "Nope"	
 -­‐-­‐	
 Kaboom

And when I say "can't", I
mean "the compiler will
refuse to produce a binary
because it thinks your
program is broken."

Not Ruby
increment	
 ::	
 Int	
 -­‐>	
 Int	

increment	
 a	
 =	
 a	
 +	
 1	

!

…	

!

map	
 increment	
 [1,2,3]	
 	
 	
 -­‐-­‐	
 [2,3,4] 
map	
 increment	
 ["a","b"]	
 -­‐-­‐	
 Kaboom

This "checking" extends further.
!
map() is a function that takes a
function that takes thing A and
thing B (a -> b), and a list of As to
turn into a list of Bs.

More Not-Ruby
data	
 LogLevel	
 =	
 Info	
 |	
 Error	
 |	
 Warning	

!
data	
 LogMessage	
 =	
 LogMessage	
 {	

	
 	
 level	
 	
 	
 ::	
 LogLevel,	

	
 	
 message	
 ::	
 String	

}	

We're defining a type LogLevel here,
which is either an Info, Error or Warning.
Error is representing something – think of
it like you do symbols; they don't have a
"value" in themselves. 
 
And then we have a LogMessage, which
has a level of type LogLevel, and a string.

More Not-Ruby
data	
 LogLevel	
 =	
 Info	
 |	
 Error	
 |	
 Warning	

!
data	
 LogMessage	
 =	
 LogMessage	
 {	

	
 	
 level	
 	
 	
 ::	
 LogLevel,	

	
 	
 message	
 ::	
 String	

}	

!
hasErrors	
 ::	
 [LogMessage]	
 -­‐>	
 Bool	

hasErrors	
 logs	
 =	
 length	
 (filter	
 isError	
 logs)	
 >	
 0	

	
 	
 where	

	
 	
 	
 	
 isError	
 (LogMessage	
 {	
 level	
 =	
 Error	
 })	
 =	
 True	

	
 	
 	
 	
 isError	
 _	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 =	
 False

And a function hasErrors.  
 
[Explanation ensues. This example
uses functions named similar to
Ruby equivalents. I'll use foldr
next time, I swear.]

Ruby
def	
 has_errors(logs)	

	
 	
 logs.any?	
 {	
 |log|	

	
 	
 	
 	
 log.level	
 ==	
 LogMessage::Error	

	
 	
 }	

end

The same code in Ruby...!

Ruby
def	
 has_errors(logs)	

	
 	
 if	
 !logs.is_a?(Enumerable)	

	
 	
 	
 	
 raise	
 TypeError,	
 "Not	
 a	
 list"	

	
 	
 end	

	
 	
 logs.any?	
 {	
 |log|	

	
 	
 	
 	
 if	
 !log.is_a?(LogMessage)	

	
 	
 	
 	
 	
 	
 raise	
 TypeError,	
 "Not	
 a	
 Log"	

	
 	
 	
 	
 end	

	
 	
 	
 	
 log.level	
 ==	
 LogMessage::Error	

	
 	
 }	

end

Well, no. We'd need to do all this
to do the same checks in Ruby.
And we'd still have to run the code
to check it, and run it with a bunch
of different inputs, and hope we
got enough representative cases.

http://logs.is
http://log.is

we need to go deeper

Even More Not-Ruby
parseLogLines	
 ::	
 String	
 -­‐>	
 [LogMessage]	

parseLogLines	
 x	
 =	
 ...

This takes a list of Strings and
produces a list of LogMessages,
our type from earlier.

Even More Not-Ruby
parseLogLines	
 ::	
 String	
 -­‐>	
 [LogMessage]	

parseLogLines	
 x	
 =	
 ...	

!
readLog	
 ::	
 (String	
 -­‐>	
 [LogMessage])	

	
 	
 	
 	
 	
 	
 	
 	
 -­‐>	
 FilePath	

	
 	
 	
 	
 	
 	
 	
 	
 -­‐>	
 IO	
 [LogMessages]	

readLog	
 parse	
 file	
 =	
 ...

And a readLog function that takes a function that takes a string and
produces a list of LogMessages, a file to look at, and produces a list
of LogMessages as the result of IO.

Note, this function could fire the missiles while giving me log
messages. When we section code off that talks to the outside world
we don't have to consider anymore that anything could do so.

Even More Not-Ruby
data	
 Maybe	
 a	
 =	
 Just	
 a	
 |	
 Nothing	

!
parseLogLine	
 ::	
 String	
 -­‐>	
 Maybe	
 LogMessage	

parseLogLine	
 line	
 =	
 ...

We could have a type here that represents having a thing (of any
type, we don't care), or nothing. This is part of the standard
library, but you can easily make your own.

And here, it's representing the possibility of failure; the log line
might be invalid, so we might get back a useful log or we might
back nothing. Anything using this function will be forced (by the
compiler) to consider the possibility of failure in advance.

Even More Not-Ruby
data	
 Either	
 a	
 b	
 =	
 Left	
 a	
 |	
 Right	
 b	

!
parseLogLine	
 ::	
 String	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 -­‐>	
 Either	
 ParsingError	
 LogMessage	

parseLogLine	
 line	
 =	
 ...

We have a similar thing here; parseLogLine can return Either a
ParsingError (a type we'd define, just like LogMessage), or a
LogMessage. 
 
This is being used here as failure-with-more-context.

Even More Not-Ruby
parseLogLine	
 ::	
 String	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 -­‐>	
 Maybe	
 LogMessageWithOrigin	

parseLogLine	
 log	
 =	
 do	

	
 	
 origin	
 	
 <-­‐	
 parseOrigin	
 message	

	
 	
 message	
 <-­‐	
 parseMessage	
 origin	
 message	

	
 	
 return	
 (LogMessageWithOrigin	
 origin	
 message)

Or say we have a different LogMessage type that
will need different message parsing depending on
the origin of the message, and we need to drop out
early if we can't figure out the origin.  
 
[Brief Maybe, Monad, and patterns-except-with-
laws-you-can-actually-test explanation follows.]

Even More Not-Ruby
fetchAuthorWithPosts	
 ::	
 AuthorId	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 -­‐>	
 IO	
 (Maybe	
 (Author,[Post]))	

fetchAuthorWithPosts	
 id	
 =	
 runMaybeT	
 $	
 do	

	
 	
 author	
 <-­‐	
 MaybeT	
 $	
 fetchAuthor	
 id	

	
 	
 posts	
 	
 <-­‐	
 MaybeT	
 $	
 fetchPosts	
 (map	
 postId	
 author)	

	
 	
 return	
 (author,posts)

["and we can keep building top of
these pieces while having
guarantees about how they work"
hand-waving because this is a
short talk. And I've reached the
extent of what I can pretend I
know.]

Even More Not-Ruby
fetch	
 ::	
 [Url]	
 -­‐>	
 IO	
 [Maybe	
 String]	

fetch	
 pages	
 =	
 mapConcurrently	
 getURL	
 pages	

!
-­‐-­‐	
 ...	

fetch	
 ["http://example.com/shovel",	

	
 	
 	
 	
 	
 	
 	
 "http://example.com/spade"]

[We're now breezing through
"examples built on dependable
building blocks" because this talk
is short.]

Last Bit of Not-Ruby
increment	
 ::	
 Num	
 n	
 =>	
 n	
 -­‐>	
 n	

increment	
 a	
 =	
 a	
 +	
 1

And back to increment. We say increment :: Int -> Int before.
We're generalising now.  
 
We're saying that, for any n (like an Int, or a Float, or Your
Own Custom Type Here) that has a bunch of functions
defined for it matching a Num "interface", we can give it
(and 1) to +. 
 
It allows us someone using this code later with their own
types to use our functions by implementing that interface for
their own types.

There are massive realms of possibility to
increase the safety and maintainability of our
code, and we can't really touch any of it.
We have to think about (or actively ignore)
every state the system we can get into when
we go to change it.

What can we fix?
Or borrow. Or steal.

Well. It's not looking good, but...

A Safer Subset...?
The DiamondBack project:
http://www.cs.umd.edu/projects/PL/druby/

We could try a subset of Ruby
without some of the crazy bits that
make it nightmarish to statically
analyse. The DiamondBack
approach tries this, ...

http://www.cs.umd.edu/projects/PL/druby/

A Safer Subset...?
The DiamondBack project:
http://www.cs.umd.edu/projects/PL/druby/
• Type inference
• Type annotations
• Dynamic checking
• Metaprogramming support

... adding Inference, explicit type
annotation when necessary,
dynamic checking for things that
can't be statically checked or
modified to be statically checked,
and metaprogramming support
for handling respond_to?().

http://www.cs.umd.edu/projects/PL/druby/

A Safer Subset...?
The DiamondBack project:
http://www.cs.umd.edu/projects/PL/druby/
!

Abandoned in 2009. 😥

I'm genuinely sad about this.

http://www.cs.umd.edu/projects/PL/druby/

A Safer Subset...?
The DiamondBack project:
http://www.cs.umd.edu/projects/PL/druby/
!

Abandoned in 2009. 😥
It's basically not Ruby anymore.

The big problem is that it's basically not Ruby anymore.
You lose most of the ecosystem. If you get really lucky you
could have a RubyMotion-like community, but I fear that'd
need the iOS-like impetus to get that going.

http://www.cs.umd.edu/projects/PL/druby/

Complete Fork?
Crystal is a Ruby fork with compilation
and static typing.
It started as an interpreter fork, but it's
very much "Ruby-inspired syntax" now:
http://crystal-lang.org/2013/11/14/good-
bye-ruby-thursday.html

http://crystal-lang.org/2013/11/14/good-bye-ruby-thursday.html

Complete Fork?
Definitely not Ruby anymore.
Also, again, a subset of the crazier (read:
"wildly unsafe") features Ruby gives you
access to.

"Gradual" Typing...?
PHP (!) now has this in the form of
Facebook's Hack/HHVM:
http://docs.hhvm.com/manual/en/
hack.annotations.php

Facebook has basically forked PHP to add
optional typing with Hack.

http://docs.hhvm.com/manual/en/hack.annotations.php

"Gradual" Typing...?
Allows older only-verifiable-at-run-time
PHP to be run with verified-at-
compilation Hack in the same program.
Existing libraries (that don't rely on C
extensions) work. Existing code works.
New code is checked.

"Gradual" Typing...?
<?hh	

class	
 MyClass	
 {	

	
 	
 const	
 int	
 MyConst	
 =	
 0;	

!
	
 	
 private	
 string	
 $x	
 =	
 '';	

!
	
 	
 public	
 function	
 increment(int	
 $x):	
 int	
 {	

	
 	
 	
 	
 $y	
 =	
 $x	
 +	
 1;	

	
 	
 	
 	
 return	
 $y;	

	
 	
 } 
 
	
 	
 public	
 function	
 addLater(int	
 $x):	
 (function(int):	
 int)	
 {	

	
 	
 	
 	
 return	
 function($y)	
 use	
 ($x)	
 {	

	
 	
 	
 	
 	
 	
 return	
 $x	
 +	
 $y;	

	
 	
 	
 	
 };	

	
 	
 }	

}

PHP is much more fixed than Ruby, sadly. This is actually a
benefit here; it's not possible to add or override methods
or re-open classes at runtime.

"Gradual" Typing...?
<?hh	

class	
 MyClass	
 {	

	
 	
 const	
 int	
 MyConst	
 =	
 0;	

!
	
 	
 private	
 string	
 $x	
 =	
 '';	

!
	
 	
 public	
 function	
 increment(int	
 $x):	
 int	
 {	

	
 	
 	
 	
 $y	
 =	
 $x	
 +	
 1;	

	
 	
 	
 	
 return	
 $y;	

	
 	
 } 
 
	
 	
 public	
 function	
 addLater(int	
 $x):	
 (function(int):	
 int)	
 {	

	
 	
 	
 	
 return	
 function($y)	
 use	
 ($x)	
 {	

	
 	
 	
 	
 	
 	
 return	
 $x	
 +	
 $y;	

	
 	
 	
 	
 };	

	
 	
 }	

}

And although the above is really encouraging (look! you can tell it
to expect a function as a return value!), it requires you to be very
verbose, despite Hack's claim of Type Inference. Remember those
previous "Not Ruby" examples with no mentions of types?

"Gradual" Typing...?
Facebook is also doing the same kind of
thing with Flow, a JavaScript type-
checker you explicitly turn on for chunks
of code:
http://flowtype.org/

http://flowtype.org/

QuickCheck...?
Let's say we forgot the whole type thing;
what about making tests better?
QuickCheck is used for stating an
invariant, and then throwing a bunch of
test data at it automatically, eg.

State a rule, generate lots test data based on the types
functions expect, check that the function satisfies the rule.
!
Types can help reduce what we need to check with our tests
(and therefore the number of tests), but we still need them.

QuickCheck...?
prop_increments	
 c	
 =	
 increment	
 c	
 ==	
 c	
 +	
 1

This a dumb example. It's checking that,
whenever we give a number to increment, we
always get back that number plus one.  
!
But! Our original code has a bug.  
!
increment	
 (maxBound	
 ::	
 Int) gives us
-9223372036854775808; this would help expose
that bug.

QuickCheck...?
prop_increments	
 c	
 =	
 increment	
 c	
 ==	
 c	
 +	
 1	

!
#	
 Rantly	

test	
 "increments"	
 do	

	
 	
 property_of	
 {	
 integer	
 }.check	
 {	
 |i|	

	
 	
 	
 	
 assert_equal(increment(i),	
 i	
 +	
 1)	

	
 	
 }	

end

We have an attempt to reproduce some of
this in Ruby with Rantly.
Without types it's an uphill slog, though.
[test data generation ramble follows]

QuickCheck...?
prop_join_split	
 xs	
 =	
 forAll	
 (elements	
 xs)	
 check	

	
 	
 where	

	
 	
 	
 	
 check	
 c	
 =	
 join	
 c	
 (split	
 c	
 xs)	
 ==	
 xs	

!
prop_insert	
 x	
 xs	
 =	

	
 	
 ordered	
 xs	
 ==>	
 ordered	
 (insert	
 x	
 xs)

... for example we're using quickcheck here to
test if splitting a list of things and joining them
back together produces the original (the example
this was drawn from had an edge case where it'd
sometimes lose items) ... the second is checking
that a list stays ordered when added to ...

"Soft Typing"?
Matz just mentioned something about a
kind of "soft typing". Very hazy, but
something to watch for later:
https://www.omniref.com/blog/blog/
2014/11/17/matz-at-rubyconf-2014-will-
ruby-3-dot-0-be-statically-typed/

https://www.omniref.com/blog/blog/2014/11/17/matz-at-rubyconf-2014-will-ruby-3-dot-0-be-statically-typed/

What can't we fix?
sad-kid-frown.gif

Sad Frowning
• Without a restricting ourselves to a stricter subset of

the language (eg. sans the crazy meta-
programming), we are not able to look at code
before running it and know how it's doing to behave.

• Without restricting behaviour, we can't make
guarantees about what our code will do.

• Without doing this, as our apps getter larger, we
have to write exponentially more tests and
conditionals to check, or they get broken, buggy and
expensive to fix.

RUBY'S

OUTER LIMITS
Or: "Why Ruby can be frustrating to use when writing

medium/large-ish apps."

You may be thinking I'm
advocating for this.  
!
[STTNG clip, Picard yelling "All
hands, abandon ship!" before the
Enterprise blows up.]

Ruby Might Possibly be "Doomed"
• Not in the "going to die out, unpopular language, no

paid work" sense.
• Not in the "not ever going to change, not going to

evolve" sense.
• More that improvement is approaching a maxima

that cannot be broken through without radically
altering the language and breaking backwards
compatibility.

• Our tools are failing us when used for largeish
projects.

... But my previous Doomed title may be a /slight/ over-
dramatisation. [Reads conclusion off slides.]

Fin.

 
Rob Howard 

@damncabbage	

https://speakerdeck.com/damncabbage/

Credits
Title slide photo © Ozroads:	

www.ozroads.com.au/NSW/Highways/Pacific/heronscreek.htm

https://speakerdeck.com/damncabbage/
http://www.ozroads.com.au/NSW/Highways/Pacific/heronscreek.htm

Fin.

 
Rob Howard 

@damncabbage	

https://speakerdeck.com/damncabbage/

Credits
Title slide photo © Ozroads:	

www.ozroads.com.au/NSW/Highways/Pacific/heronscreek.htm

https://speakerdeck.com/damncabbage/
http://www.ozroads.com.au/NSW/Highways/Pacific/heronscreek.htm

