Property Testing

A draft experience report
on the use of StreamData for

Property Testing

A draft experience report
on the use of StreamData for

Property Testing

In Elixir

A draft experience report
on the use of StreamData for

Property Testing

in Elixir
at my last job

ﬁ Rob Howard
-¥* | @damncabbage
_ http:/robhoward.id.au

What is
Property Testing?

(and StreamData)

i

I L]
s ¥ sealhs
- »
r

- b - & AT

\Wefiust donit

test "word-count" do
text = "This 1s a test. And this too!"

assert WordCount.count(text) ==
end

test "word-count" do
words = [
"ThiS", "j_S"’ all’ "teSt.",
IIAndII, Ilthisll’ IItOO!II’
]

text = Enum.join(" ", words)

assert WordCount.count(text) ==
end

def word do
Enum. random([
"ThiS", "j_S"’ ||a||’ "teSt.", IIAndII’ "thj_S!"
1)

end

test "word-count" do
word_count = Enum.random(1..10)
text = (1..word_count)

|> Enum.map(fn _ -> word() end)
|> Enum. join(" ")
assert WordCount.count(text) == word_count

end

def word do
Enum. random([
IIThiSII’ IIiSII’ Ilall’ "teSt."’ IIAndII’ "thj_S!"
1)

end

test "word-count" do
word_count = Enum.random(1..10)
text = (1..word_count)

|> Enum.map(fn _ -> word() end)
|> Enum. join(" ")
assert WordCount.count(text) == word_count

end

def word do
Enum. random([
"ThiS", "j_S"’ ||a||’ "teSt.", IIAndII’ "thj_S!"
1)

end

test "word-count" do
word_count = Enum.random(1..10)
text = (1..word_count)

|> Enum.map(fn _ -> word() end)
|> Enum. join(" ")
assert WordCount.count(text) == word_count

end

def word do
member_of ([
"ThiS", IIiSII’ Ilall’ "teSt.", IIAndII’ Ilthis!ll
1)

end

property "word-count" do
check all count <- positive_integer()
words <- list_of(word, length: count)

do

text = words |[> Enum.join(" ")

assert WordCount.count(text) == count
end

end

def word do
member_of ([
"ThiS", IIiSII’ Ilall’ "teSt.", IIAndII’ Ilthis!ll
1)

end

property "word-count” do
check all count <- positive_integer()
words <- list_of(word, length: count)

do

text = words |[> Enum.join(" ")

assert WordCount.count(text) == count
end

end

def word do
member_of ([
"ThiS", IIiSII’ Ilall’ "teSt.", IIAndII’ Ilthis!ll
1)

end

property "word-count" do
check all count <- positive_integer()
words <- list_of(word, length: count)

do

text = words |[> Enum.join(" ")

assert WordCount.count(text) == count
end

end

def word do
member_of ([
"ThiS", IIiSII’ Ilall’ "teSt.", IIAndII’ Ilthis!ll
1)

end

property "word-count" do
check all count <- positive_integer()
words <- list_of(word, length: count)

do

text = words |[> Enum.join(" ")

assert WordCount.count(text) == count
end

end

def word do
member_of ([
"ThiS"’ Ilisll’ Ilall, "teSt."’ ||And||, "thj_S!"
1)

end

property "word-count” do
check all count <- positive_integer()
words <- list_of(word, length: count)

do

text = words |> Enum.join(" ")

assert WordCount.count(text) == count
end

end

def word do
member_of ([
"ThiS", IIiSII’ Ilall’ "teSt.", IIAndII’ Ilthis!ll
1)

end

property "word-count" do
check all count <- positive_integer()
words <- list_of(word, length: count)

do

text = words |[> Enum.join(" ")

assert WordCount.count(text) == count
end

end

StreamData

| whatyouhide / stream_data ® Watch~ 29

<> Code Issues 11 Pull requests 1 Projects 0 WiKi Insights

Data generation and property testing for Elixir

elixir property-based-testing property-testing data-generation quickcheck
{p) 264 commits v 1 branch O 7 releases
Branch: master ~ New pull request Create new file @ Upload files

" lasseebert and whatyouhide Fixed example in docs for fixed_map/1 (#108)

BE ocvamnlec Rlame avrantinne that are re-raicead

pasea 1estng IS 10 TINA TNe Propertes we want our coae 10 Noia. UNce a property IS Touna, we can use
those properties to complement our example-based tests.

At ElixirConf US 2017, we have announced that a property testing library will be part of Elixir v1.6. Our
goal with this post is not to answer the technical questions behind StreamData but rather explain why
it is being added to the language. For more information on property testing per se, the first three

chapters of Fred’s book is a great starting point. To learn more about StreamData itself, see its
announcement

Wil Nnave Sometning out IN UCTober, naving 1o walit unti tne NexXt April 10 De apie 10 1aik apout IT In
public, it is definitely too long.

For example, | announced StreamData for Elixir before it was part of master, and it turns out that it

won’t be part of Elixir core anyway. But the discussions that happened in the months after the
announcement were very productive.

So | don’t think doing the announcement before having something out is bad. We already have another

thraad ahniit | halViaw with @ ftmhh B anich anAd | Aieriliceinn nneccihla imnlamantatinne | wwninilA et

paseda 1estng IS 10 TINA Ne Properties we want our Coae 10 Noia. UNCEe a Property IS Tounda, we can use
those properties to complement our example-based tests.

At ElixirConf US 2017, we have announced that a property testing library will be part of Elixir v1.6. Our
goal with this post is not to answer the technical questions behind StreamData but rather explain why
it is being added to the language. For more information on property testing per se, the first three
chapters of Fred’s book is a great starting point. To learn more about StreamData itself, see its
announcement

Wil nave Sometning out IN UCTODEr, Naving 10 walit unti tNe NexXt APril 10 De apie 10 1alk apout IT In
public, it is definitely too long.

For example, | announced StreamData for Elixir before it was part of master, and it turns out that it
won’t be part of Elixir core anyway. But the discussions that happened in the months after the
announcement were very productive.

So | don’t think doing the announcement before having something out is bad. We already have another

thraad alhniit | viaViaw with @tmhh Mranirh and | Adieriliceinn nnecihla imnlamantatinne | wniilA et

paseda 1estng IS 10 TINA Ne Properties we want our Coae 10 Noia. UNCEe a Property IS Tounda, we can use
those properties to complement our example-based tests.

At ElixirConf US 2017, we have announced that a property testing library will be part of Elixir v1.6. Our
goal with this post is not to answer the technical questions behind StreamData but rather explain why
it is being added to the language. For more information on property testing per se, the first three
chapters of Fred’s book is a great starting point. To learn more about StreamData itself, see its
announcement

Wil nave Sometning out IN UCTODEr, Naving 10 walit unti tNe NexXt APril 10 De apie 10 1alk apout IT In
public, it is definitely too long.

For example, | announced StreamData for Elixir before it was part of master, and it turns out that it
won’t be part of Elixir core anyway. But the discussions that happened in the months after the
announcement were very productive.

So | don’t think doing the announcement before having something out is bad. We already have another

thraad alhniit | viaViaw with @tmhh Mranirh and | Adieriliceinn nnecihla imnlamantatinne | wniilA et

paseda 1estng IS 10 TINA Ne Properties we want our Coae 10 Noia. UNCEe a Property IS Tounda, we can use
those properties to complement our example-based tests.

At ElixirConf US 2017, we have announced that a property testing library will be part of Elixir v1.6. Our
goal with this post is not to answer the technical questions behind StreamData but rather explain why
it is being added to the language. For more information on property testing per se, the first three
chapters of Fred’s book is a great starting point. To learn more about StreamData itself, see its
announcement

Wil nave Sometning out IN UCTODEr, Naving 10 walit unti tNe NexXt APril 10 De apie 10 1alk apout IT In
public, it is definitely too long.

For example, | announced StreamData for Elixir before it was part of master, and it turns out that it
won’t be part of Elixir core anyway. But the discussions that happened in the months after the
announcement were very productive.

So | don’t think doing the announcement before having something out is bad. We already have another

thraad alhniit | viaViaw with @tmhh Mranirh and | Adieriliceinn nnecihla imnlamantatinne | wniilA et

Generators

1mport StreamData

example = constant("Hello, World")

check all greeting <- example
do

assert greeting == "Hello, World"
end

1mport StreamData

example = constant("Hello, World")

check all greeting <- example
do

assert greeting == "Hello, World"
end

1mport StreamData

example = constant("Hello, World")

check all greeting <- example
do

assert greeting == "Hello, World"
end

1mport StreamData

example = constant("Hello, World")
StreamData.t(String.t)

check all greeting <- example
do

assert greeting == "Hello, World"
end

1mport StreamData

example = constant("Hello, World")

check all greeting <- example
do

assert greeting == "Hello, World"
end

1mport StreamData

example = constant("Hello, World")

check all greeting <- example
do

assert greeting == "Hello, World"
end

1mport StreamData

example = constant("Hello, World")

check all greeting <- example
do

assert greeting == "Hello, World"
end

1mport StreamData

word = member_of ([
"Hello",
"World",
"Tokyo",
"Perth",

1)

check all a_word <- worad
do

assert String.length(a_word) ==
end

1mport StreamData

word = member_of ([
"Hello",
"World",
"Tokyo",
"Perth",

1)

check all a_word <- worad
do

assert String.length(a_word) ==
end

1mport StreamData

word = member_of(L...])
words = list_of (word)

check all original <- words
do

eﬂC.j

1mport StreamData

word = member_of(L...])
words = list_of(word)

check all original <- words
do

ena

1mport StreamData

word = member_of(L...])
words = list_of (word)

sentence = list_of(words) [|> ...

check all original <- words
do

eﬂC.j

1mport StreamData

word = member_of(L...])
words = list_of (word)

sentence = list_of(words) |> ...

check all original <- words
do

ena

1mport StreamData
def word, do: member_of([...])

def words, do: list_of(word())
def sentence do

eﬂC.j

1mport StreamData

def word, do: member_of([...])
def words, do: list_of(word())
def sentence do
gen all words <- words()
do
words
|> Enum. join(" ")
|> String.capitalize()
|> Kernel.<>(".")
end
end

1mport StreamData

def word, do: member_of([...])
def words, do: list_of(word())
def sentence do
gen all words <- words()
do
words
|> Enum. join(" ")
|> String.capitalize()
|> Kernel.<>(".")
end
end

1mport StreamData

def word, do: member_of([...])
def words, do: list_of(word())
def sentence do
gen all words <- words()
do
words
|> Enum. join(" ")
|> String.capitalize()
|> Kernel.<>(".")
end
end

1mport StreamData

def word, do: member_of([...])
def words, do: list_of(word())
def sentence do
gen all words <- words()
do
words
|> Enum. join(" ")
|> String.capitalize()
|> Kernel.<>(".")
end
end

1mport StreamData

def word, do: member_of([...])
def words, do: list_of(word())
def sentence do
gen all words <- words()
do
words
|> Enum. join(" ")
|> String.capitalize()
|> Kernel.<>(".")
end
end

1mport StreamData

def word, do: member_of([...])
def words, do: list_of(word())
def sentence do
gen all words <- words()
ending <- member_of (~W[. ! ? P1])
do
words
|> Enum. join(" ")
|> String.capitalize()
| > Kernel.<>(ending)
end
end

1mport StreamData

def word, do: member_of([...])
def words, do: list_of(word())
def sentence do
gen all words <- words()
ending <- member_of (~W[. ! ? ?1])
do
words
|> Enum. join(" ")
|> String.capitalize()
| > Kernel.<>(ending)
end
end

def naive_datetime() do
gen all date <- date(),
time <- time()

do
{:0k, ndt} = NaiveDateTime.new(date, time) do
end
end
def date do

gen all year <- integer(2010..2040),
{:0k, jan1} = Date.new(year, 1, 1),
days <- integer(0..(if Date.leap_year?(janl), do: 365, else: 364))
do
Date.add(jan1, days)
end
end

def time do
gen all hour <- integer(0..23),
min <- 1integer(0..59),
sec <- 1nteger(0..59),
usec <- 1integer(0..999_999)
do
{:0k, time} = Time.new(hour, min, sec, usec)
time
end
end

StreamData
v0.4.2

Q

PAGES
MODULES
EXCEPTIONS

ExUnitProperties

Top
Summary
+ Functions

StreamData

Top
Summary

+ Types

+ Functions

L L - - v.rwvb vwl L L - S S S ' “.I.v - - . - ¥V s Pl - W eie W S e J“' N eV

fixed_list(datas)

Generates a list of fixed length where each element is generated from the
corresponding generator in data

fixed_map(data)
Generates maps with fixed keys and generated values

float(options \\ [1)
Generates floats according to the given options

frequency(frequencies)

Generates values from different generators with specified probability

integer()
Generates integers bound by the generation size

integer(range)

Generates an integer in the given range

iodata()
Generates iodata

iolist()
Generates iolists

keyword_of (value_data)
Generates keyword lists where values are generated by value_data

list_of(data)
Generates lists where each values is generated by the given data

list_of(data, options)
Generates lists where each values is generated by the given data

map(data, fun)

Positives, Pains, and
Sundry General Experiences

Generator Pitfalls

1)
Size of Generated Data

word = member_of(L...])
words = list_of (word)
sentence = list_of (words)

check all data <- sentence,
text = List.flatten(data)
|> Enum. join(" ")
do

ena

sentence =
list_of(
list_of (member_of ([...1]))
)

check all data <- sentence,
text = List.flatten(data)
|> Enum. join(" ")
do

ena

sentence =
list_of(
list_of (member_of ([...]))

)

check all data <- sentence,
text = List.flatten(data)
|> Enum. join(" ")
do

enc.zl

-

Download from N 1) 3062999
Dreamstime.com -
a c Te'minalo 3d | DreamsliTe.com

Ths watermarked comg image s far previewing ouraoses only.

def smallish(generator) do
generator
|> SD.scale(fn size ->
trunc(:math.log(size))

end)
end
words = smallish(list_of(word()))
sentence = smallish(list_of(words))

def smallish(generator) do
generator
|> SD.scale(fn size ->
trunc(:math.log(size))

end)
end
words = smallish(list_of (word()))
sentence = smallish(list_of(words))

def smallish(generator) do
generator
|> SD.scale(fn size ->
trunc(:math.log(size))

end)
end
words = smallish(list_of(word()))
sentence = smallish(list_of(words))

def smallish(generator) do
generator
|> SD.scale(fn size ->
trunc(:math.log(size))

end)
end

def biggish(generator) do
generator
|> SD.scale(fn size ->
size * 99
end)
end

2)
Reconstructing information after the
fact is tough. So don't try to do that.

def word do
Enum. random(["Hello", "World"])
end
def sentence do
(1..Enum.random(1..10))
|> Enum.map(fn _ -> word() end)
|> Enum. join(" ")
1> (&(&1T <> ".")).() # help
end

test "word-count" do
sentence = sentence()
assert WC.count(sentence) == ...

end

def word do
Enum. random(["Hello", "World"])
end
def sentence do
(1..Enum.random(1..10))
|> Enum.map(fn _ -> word() end)
|> Enum. join(" ")
1> (&(&1T <> ".")).() # help
end

test "word-count" do

sentence = sentence()

assert WC.count(sentence) == ... # now what?
end

def word do
member_of (["This", "1s", "a", ...])
end

property "word-count" do
check all count <- positive_integer()
words <- list_of(word, length: count)

do

text = words |[> Enum.join(" ")

assert WordCount.count(text) == count
end

end

def word do
member_of (["This", "1s", "a", ...])
end

property "word-count" do
check all count <- positive_integer()
words <- list_of(word, length: count)

do

text = words |[> Enum.join(" ")

assert WordCount.count(text) == count
end

end

3)
Timex and/or Timezones

def naive_datetime() do
gen all date <- date(),
time <- time()

do
{:0k, ndt} = NaiveDateTime.new(date, time) do
end
end
def date do

gen all year <- integer(2010..2040),
{:0k, jan1} = Date.new(year, 1, 1),
days <- integer(0..(if Date.leap_year?(janl), do: 365, else: 364))
do
Date.add(jan1, days)
end
end

def time do
gen all hour <- integer(0..23),
min <- 1integer(0..59),
sec <- 1nteger(0..59),
usec <- 1integer(0..999_999)
do
{:0k, time} = Time.new(hour, min, sec, usec)
time
end
end

def nailve_datetime() do
gen all date <- date(),
time <- time()
do

{:0k, ndt} = NaiveDateTime.new(date, time) do
end

ena

def potentially_ambiguous_datetime() do

gen all naive <- naive_datetime()
do

Timex.to_datetime(naive, "America/Los_Angeles")
end

ena

Failed with generated values (after 100 runs):

left:
B{timestamp: #DateTime<
2024-11-03 01:20:57-07:00 PDT
America/Los_Angeles

>}

right:

%{timestamp: #<Ambiguous(
DateTime<

2024-11-03 01:20:57-07:00 PDT
America/Los_Angeles
> ~ #DateTime<

2024-11-03 01:20:57-08:00 PST

America/Los_Angeles
>)>

}

Round-Tripping

alias Example.Health. Json

describe "JSON round-trips" do
property "without IDs" do
check all reports <- list_of(Gen.Health.health_report(nil))
do
assert Json.parse(Json.generate(reports)) == {:o0k, reports}
end
end

property "with IDs" do
report_gen = Gen.Health.health_report(nil) |[> Gen.Id.with_1d()
check all reports <- list_of(report_gen)
do

assert Json.parse(Json.generate(reports)) == {:0k, reports}

end

end

end

def parse(list_of_maps) do

{:0k, L[%HealthReport{}, %HealthReport{}, ...]1}
or
{:error, ...}

end

def generate(reports) do

[%{"1d" => ..., "attributes" => ...}, ...]
end

ldempotency

1. Generate data to send.

2. Make controller request.

3. Make controller request.

4. Retrieve models.

5. ... Clean up! /. (Remove DB rows)
6. Then assert your expected result.

1. Generate data to sena.
2. Make 1+ controller requests.

3. Retrieve models.
4. ...Clean up! 4 (Remove DB rows)
5. Then assert your expected result.

1. Generate data to sena.
2. Make 1+ controller requests.

3. Retrieve models.
4. ...Clean up! 4 (Remove DB rows)
5. Then assert your expected result.

1. Generate data to sena.
2. Make 1+ controller requests.

3. Retrieve models.
4. ... Clean up! 4 (Remove DB rows)
5. Then assert your expected result.

(Shrinking)

Shrinking replays a test,
backtracking on the input data,
until the test starts passing again.

But ExUnitProperties runs
inside a test case.
DB data is not reset between runs.

1. Generate data to sena.
2. Make 1+ controller requests.

3. Retrieve models.
4. ... Clean up! 4 (Remove DB rows)
5. Then assert your expected result.

Shrinking Woes

created_at: nil, day_starting_at: #DateTime<2021-04-01 23:53:29.0476277>, exercise_seconds: nil, id: nil,
runwalk_meters: 45576, steps_count: nil, updated_at: nil, user:

#Ecto.Association.NotLoaded<association :user 1s not loaded>, user_id: nil, weights:
[%Example.HealthReport.WeightMeasurement{__meta__: #Ecto.Schema.Metadata<:built, "health_report_weights">,
created_at: nil, health_report: #Ecto.Association.NotLoaded<association :health_report is not loaded>,
health_report_id: nil, i1d: nil, timestamp: #DateTime<2023-10-01 02:50:52.461705+11:00 AEDT Australia/
Sydney>, updated_at: nil, weight_grams: 2992005}, %Example.HealthReport.WeightMeasurement{__meta__:
#Ecto.Schema.Metadata<:built, "health_report_weights">, created_at: nil, health_report:
#Ecto.Association.NotLoaded<association :health_report is not loaded>, health_report_id: nil, id: nil,
timestamp: #DateTime<2013-05-31 06:38:36.8654667>, updated_at: nil, weight_grams: 2286711} 1},
%Example.HealthReport{__meta__: #Ecto.Schema.Metadata<:built, "health_reports">, burnt_joules: 142,
created_at: nil, day_starting_at: #DateTime<2037-10-27 20:32:03.5183237>, exercise_seconds: nil, 1id: nil,
runwalk_meters: 24141, steps_count: nil, updated_at: nil, user:

#Ecto.Association.NotLoaded<association :user 1s not loaded>, user_id: nil, weights: []},
%Example.HealthReport{__meta__: #Ecto.Schema.Metadata<:built, "health_reports">, burnt_joules: 20942,
created_at: nil, day_starting_at: #DateTime<2034-08-20 10:59:11.6398467>, exercise_seconds: 11893, 1id: nil,
runwalk_meters: 17910, steps_count: 24013, updated_at: nil, user:

#Ecto.Association.NotLoaded<association :user 1s not loaded>, user_id: nil, weights:
[%Example.HealthReport.WeightMeasurement{__meta__: #Ecto.Schema.Metadata<:built, "health_report_weights">,
created_at: nil, health_report: #Ecto.Association.NotLoaded<association :health_report is not loaded>,
health_report_id: nil, 1id: nil, timestamp: #DateTime<2022-09-25 04:24:59.049975-07:00 PDT America/
Los_Angeles>, updated_at: nil, weight_grams: 2891106}, %Example.HealthReport.WeightMeasurement{__meta__:
#Ecto.Schema.Metadata<:built, "health_report_weights">, created_at: nil, health_report:
#Ecto.Association.NotLoaded<association :health_report is not loaded>, health_report_id: nil, id: nil,
timestamp: #DateTime<2019-03-12 21:30:26.737857-07:00 PDT America/Los_Angeles>, updated_at: nil,
welght_grams: 1042956}, %Example.HealthReport.WeightMeasurement{__meta__: #Ecto.Schema.Metadata<:built,
"health_report_weights">, created_at: nil, health_report:

#Ecto.Association.NotLoaded<association :health_report is not loaded>, health_report_id: nil, id: nil,
timestamp: #DateTime<2029-02-22 20:36:40.0611157>, updated_at: nil, weight_grams: 34965},
%Example.HealthReport.WeightMeasurement{__meta__: #Ecto.Schema.Metadata<:built, "health_report_weights">,
created_at: nil, health_report: #Ecto.Association.NotLoaded<association :health_report is not loaded>,
health_report_id: nil, id: nil, timestamp: #DateTime<2019-04-14 03:56:08.321487-07:00 PDT America/
Los_Angeles>, updated_at: nil, weight_grams: 458541} 1}, %Example.HealthReport{__meta__

#Ecto Schema Metadata<:built. "health revports"> burnt 1oules: nil. created at: nil dav starting at:

Factories

VS

Generators
VS
... poth?

Macros

dre

Composition-Resistant

check all thing <- thingy(:thing),
max_runs: 10
do
expensive! (thing)
assert thing == thing
end

check all thing <- thingy(:thing),
max_runs: 10
do
expensive! (thing)
assert thing == thing
end

slowcheck thing <- thingy(:thing)

do
expensive! (thing)
assert thing == thing
end

defmacro slowcheck(...), do:

L

slowcheck thing <- thingy(:thing)

do
expensive! (thing)
assert thing == thing
end

Bugs Caught

this one is a bit tough to
give a useful answer for

It's a design tool.

1)
JSON round-tripping

(Parsing bug, generator bug, parsing bug, ...)

2)
ldempotent actions

(Finding bugs with the conflict-resolution for inserting.)

. ZIPS
mple:
R by exa
Ru

Round-Tripping

property_of { char, integer }.check { Ichar,sizel
file = File.join(tmpdir, "testfile-#{size}.bin")
zip = File.join(tmpdir, "testfile-#{size}.zip")

char * size # size-length string, all char.
char * size

data_write
f1lename

File.open(file, 'wb') { Ifl f.write(data_write) }
/1p::File.open(zip, CREATE) {Ifl f.add(filename, file) }

data_read = nil
/1p::Fi1le.open(zip) {If]
data_read = f.first.get_input_stream.read

¥

expect(data_write).to == data_read

Round-Tripping

Size: 65535 - Gen'd, Written,
/1pped, Unzipped. Written data
equals read data.

Size: 65536 - Gen'd, Written,
/1pped, /Users/rhoward/code/
experiments/p7zip/rubyzip/lib/
zip/1inflater.rb:44:1n 1inflate’:

thvalid stored block lengths
(Z11b: :Datakrror)

Round-Tripping
$ 7z x testfile-65536.zip
/-/1p [064] ..

Processing archive: testfile-65536.z1p

Errors: Headers Error
Errors: Unconfirmed start of archive

Warnings: There are data after the end of
archive

Extracting testfile-65536: Segmentation fault

Round-Tripping

$ 7z x testfile-65536.zip
/-/1p [64] ..

Processing archive: testfile-65536.z1p

Errors: Headers Error
Errors: Unconfirmed start of

Warnings: There are data afte
archive

rchive 1
the end of

Extracting testfile-65536: Segmentation fault

sO what's the
answer then

Yes, if you have someone on
your team who's already
used property testing before.

Tentative ves, if you don't have

that person. Keep it to isolated

cases, to try it out, so you can
rip it out later.

No, if you don't want to

go off the beaten path.

Start with things that are easy
to generate data for, or you
want to test the crap out of.

How to draw an owl

1. Draw some circles 2. Draw the rest of the fucking owl

A draft experience report
on the use of StreamData for

Property Testing

in Elixir
at my last job

W .3 Rob Howard
¥+ @damncabbage
http:/robhoward.id.au

Things To Read

* Proper Testing
https://propertesting.com/

+ StreamData docs

https://hexdocs.pm/stream_data/StreamData.html

https://propertesting.com/
https://hexdocs.pm/stream_data/StreamData.html

